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THE PRINCIPLE OF MATERIAL FRAME-INDIFFERENCE AND CYLINDRICAL COUETTE FLOW 
OF A RARIFIED GAS* 

V.S. GALKIN and V.I. NOSIK 

The problem of a free molecular cylindrical Couette flow in a rotating 
coordinate system at different temperaturesandthe same angular velocities 
of the walls is considered. It is proved that, in an approximation which 
is linear in the angular velocities, the azimuthal thermal flux is 
proportional to the angular velocities of the walls in a fixed system of 
coordinates. An example of the flow of a gas which does not satisfy the 
principle Of material frame-indifference (PMI) in the axiomatic theory of 
the mechanics of continuous media is thereby constructed and, consequently, 
the above-mentioned principle is not a universal principle of mechanics. 

According to the principle of material frame-indifference, the pressure tensor P and the 
thermal flux vector q must be invariant under Euclidean transformations of the coordinate 
system such as, for example , on passing from an inertial system I toa I*-systemwhichrotates 
relative to it. In particular, P and q in a gas must not explicitly depend on its angular 
velocity of rotation. The PM1 is a postulate concerning the existence of a higher symmetry 
than symmetry with respect to Galilean transformations and, hence, the substantiation of the 
PMI requires additional considerations and assumptions. 

The results of the kinetic theory of gases which have given rise to a lengthy discussion 
in the literature, a critical review of which is given in /l/ (see, also /Z-4/), contradict 
this postulate. In fact, according to the Barnett approximation P* and q* in the X*-system 
not only depend on the gas-dynamic variables and their derivatives , as must be the case by 
virtue of the PMI, but also on the quantity O*- Ww which is equal to the rotation tensor of 
the gas Q in the inertial system of coordinates. (Here /l, 5/, W* is the rotation (spin) 
tensor of the system ZZ relative to Z* such that W*u+ = --ru, Xu* where u is the velocity of 
the gas, m, is the angular velocity of the X*-system relative to I and quantities in the 8*- 
system are indicated by using the asterisk, superscript while those in the Z-system are 
without them /l/1. 

The property of P and q which is being considered is valid for all of the approximations 
of the Chapman-Enskog method with the exception of the Navier-Stokes approximation /I/. The 
quantity Q'- W* is invariant under Euclidean transformations since it is equal to Q and it 
was therefore proposed /6, 4/ that the tensor W* should be introduced as one of the determining 
parameters with the aim of widening the domain of applicability of the PM1 and the thermo- 
dynamics of irreversible processes in general. 

However, the results which have been outlined gave rise to criticism caused by a lack of 
confidence in the higher approximations (starting with the Barnett approximation) of the 
Chapman-Enskog method for solving the Boltzmann kinetic equation (BE) for a Knudsen number 
Kn-b 0. In the opinion of several authors 17, 8/ it is necessary to obtain the solution of the 
boundary value problem for the BE in the X*-system when Kn# 0 in order to solve this problem. 
It is obvious that this a difficult problem. However, a simplification of the problem exists 
and it follows from the fact that the effects of invariance are due to the convective terms of 
the BE. The collision integral in the BE is invariant to Euclidean transformations. Hence, 
the action of these effects must also take place under a free molecular regime, that is, in 
gas flows with Knsl when the effect of intermolecular collisions and, consequently, the 
collision integral can be neglected. The results of free molecule theory have been com- 
prehensively confirmed by calculation and experiment and are qualitatively valid over a wide 
range of Kn values /9, lo/. 

As the simplest example, the solution of the problem of free molecule cylindrical Couette 
flow with different wall temperatures is presented below. This problem was chosen on account 
of the fact that, according to the Barnett approximation, an azimuthal thermal flux 9;p exists 
in such a flow when Kn<i. the magnitude of which is determined by 9. The question of the 
existence of such a 4, was one of the fundamentals in the critical discussion mentioned above 
(see /l, 51). It is proved that pm exists when Kn>)i with the same properties under 
Euclidean transformations as in the Barnett approximation. 
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1. Let us consider the planar motion of a gas between two infinite circular coaxial 
cylindrical surfaces (Fig.1) which rotate about a common axis of symmetry z with the same 
angular velocities. Let r,and r2 be the radii of the internal and external surfaces and T, 
and Tz be their temperatures. In the fixed X-system of coordinates, the walls rotate with 
an angular velocity o while, in the non-inertial X*-system, they rotate with an angular 
velocity O* so that 

0 = w* -+- o* (1.1) 

where o0 is the angular velocity of rotation of the X*-system relative to Z. 
The BE for a free molecule regime in a cylindrical rotating system of coordinates takes 

the form /l, 9, lO/ 

Fig.1 

In (1.2), account has been taken of the fact that, 
in the problem under consideration, the distribution 
function f* depends on the components of the velocities 
of the molecules ;&*, &*, t,* and the radius r E Ir,,r,l 
but is independent of z and the polar angle 'p. The 
terms which are proportional to o0 are due to Coriolis 
effects while those in wD2 involve accelerations towards 
the axis. 

In formulating the boundary conditions we shall 
confine ourselves to the consideration of the commonly 
employed law of diffusion for the reflection of molecules 
from the walls when their velocities in the coordinate 
system associated with a given element of the surface 
have a Maxwell distribution. Then, the distribution 
functions of the reflected molecules on the internal and 
external surfaces are 

Here m is the mass of a molecule, k is Boltzmann's constant and the factors n, and n2. 

are determined from the solution of the problem. 
Relationship (1.2) is a linear first-order partial differential equation. The solution 

of the equations of its characteristics has the form 

E,+r - t_ wor2 = Cl, Q - oozr2 = C, &a* = E,* + g,*) (1.4) 

By virtue of (1.4) the general solution of Eq.cl.2) will be f* = f(.$,*,c,, c,). Let us 
seek a particular solution in the form 

f* = f(E**" -I- E ** -P - w02i.2 - 2%C, + C,) 

where C, is an arbitrary constant. By satisfying the boundary conditions (1.3)‘ we finally 
obtain the solution of the problem in the form of a "two-sided" Maxwellian with domains of 
influence S,,S, = 2s - S,: 

f* = fl tt,* E S,), f * = fg (F,* E S,) 
f1.a = -421 exp {- hb2 [E:2 A- E:” i- (F;,* - o*r)2]) 

(1.5) 

4.~ = n1,2 &&)“*exp If+6P (r* - r;L,& 
(1.6) 

The expressions forA,and A, are written taking account of (1.1). At the point r, 
molecules with velocities ?,*E S, are incident on the surface of the inner cylinder while 
those with velocities i,* c Sz are incident on the surface of the outer cylinder. 

bet us stress the difference between this and the solution of the problem in a fixed 
system of coordinates. In the latter case the molecules move in straight lines (EVJ = C,) 
with a constant energy and the regions of influence are also naturally bounded by straight 
lines (the broken lines in Fig.1). In the rotating system of coordinates the trajectories 
of the molecules are warped by the Coriolis force and the kinetic energy E* - E*” is not 
conserved on account of the action of the centrifugal force field Ill/. The boundaries of 
the domains of influence are found from the problem of the intersection of the curvilinear 
trajectories passing through the point r with the circle r = rl. 

The solution of (1.5), (1.6) describes, in particular, the rotation of the gas as a 
solid body at a constant temperature T = T,. At the same time, the distribution function 

f*= A, exp(- /z,c*~), a* c:e* - i,o*r (1.7) 

is an exact locally Maxwellian solution of the non-linear BE: the collision integral in it is 
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equal to zero and (* satisfies Eq.(l.Z) /9/. The factor il, is determined from the normaliz- 
ationofthe problem. For example, in a system of coordinates which rotates together with a 
cylindrical column of gas of finite dimensions (o* = O), A, is expressed in terms of the 
geometrical parameters of the column and the mean density of the gas in it /ll/. 

The solution of the BE in the Z-system shows that, here, the distribution function of 
the molecules of the gas which is rotating as a solid body is given by the same formula (1.7) 
with rv- replaced by c. This is explained by the objectivity of the scalar f and the invariance 
of the inherent velocities of the molecules c* = e = 5 -u. 

The latter property follows simply from the transformations of the velocities: 

E* = t - i,to,r. 11* = 11 - *@.Ggr 

Rence, the locally Maxwellian solution of the BE under consideration which is written in 
terms of the characteristic velocities has the identical form in the C- and X*-systems 
/3, 5/. At the same time A, is determined by the magnitude of w and is separately independent 
of @"or (I)*. 

2. 1n order to obtain simple explicit expressions for the macroparameters in the Couette 
flow when T, + Tz we shall confine ourselves to the approximation of small angular velocities 
by neglecting the quantities O(h,-'hr,w) compared with unity and, in particular, the action 
of centrifugal forces. It is assumed that wg = O(o), ig - i', = 0 (P& TZ - T, =i 0 (T,). By 
linearizing (1.61, we can write the result in the form 

In order to calculate the macroparameter at the point r it is necessary to know the 
boundaries of the domains of influence. Let us introduce the angle $* by means of the 
relationship &* = &,* eos$*. Since the magnitude of &,* is conserved along the trajectories, 
it is sufficient to establish the limits of integration with respect to $*‘~r:[*~*, q2*1 for 
&* G S, and $* FrI- !@2*,*3*l for EPp* F- sz at the point c. Let us denote the current value 
of this angle (along trajectories) by zlfp. It follows from (1.4) that 

cos $0 = (r/r,) cos $'* -+- (w,iE,*) (P - i.%2), fP* = const (2.2) 

Formula (2.2) describes the change in $p under the action of a Coriolis force along a 
trajectory which passes through the point r and intersects the circle r= i'r. A solution of 
this intersection problem exists when 1 cost&, I< 1. By treating the cases of positive and 
negative values of COS% separately, we find 

*z * = a + @, q2* = x -a _t p, *a* = 2x -t Q + B (2.3) 

a = afccos (r&), 6 = o0 Ii? - rzz&* 

In obtaining (2.31, linearization with respect to og of the corresponding general ex- 
pressions in the values 

*j=_ q1** loO=O, i == 1,2,,7 (2.4) 

which are valid in the case of the fixed coordinate system /lo/ has been used. 
Let us now calculate the azimuthal (tangential) thermal flux qv. By virtue of the 

objectivity of f and the invariance of c in the B*system, it is given by a formula of the 
same form as in the X-system fl, 5/ 

(2.5) 

By virtue of (2.5) it is first necessary to calculate the mean velocity of the gas %* 
in terms of which c,* (u,* E 0) is determined. Using f2.1), (2.3) and (2.41, we have 

By carrying out some calculations we convince ourselves that the latter expression is 
of the order of the angular velocity o. Hence, omitting the out of order terms, we sub- 
stitute into (2.6) the formula for the number density R which describes the distribution of 
the latter in the problem of heat exchange between immobile walls, when 
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(2.71 

It is for this reason that, here and below, the relationship n&s = 6, fJ = (T~/T~)~/z, which 
is a corollary of the condition of no flow on the fixed internal cylinder, can be used. From 
(2.7), we have 

n=n,l(2ny), y-'=n--22a+(x+2a)e (2.8) 

Here n,is expressed in terms of 8, )*l/rz and the mean density over the region occupied by 
the gas /lo/. After this, when account is taken of (1.11, we obtain 

ug* = uq -l"og, atp = r'0 11 + y (e - 1) sin 24 (2.91 

The gas rotates as a solid body when the temperatures of the walls are identical (0 = 1). 
The value of qg* is calculated in the same manner as that of (2.6) but with the difference 

that, instead of the linearized fi,r in the integrands of (2.51, it is necessary to sub- 
stitute the products c,*c*2f,,z which have been linearized in &Q*%*~F,,,. In the final analysis 
we have 

qv* = ornk (Z'rTr)"*y2 (1 - 0) B sin 2a (2.10) 

B = 4s (1 + 0) -t (I - 0) (2a + sin Za), e = (T1/T2p 

Here, n, y, and aare defined by formulae (2.8) and (2.3). Analogous calculations for 
the fixed system of coordinates yield the same result. 

3. Hence, there is an azimuthal thermal flux (2.10) in cylindrical Couette flow when 

T, Z Tz which is proportional to the angular velocity o of the walls relative to the first 
system of coordinates both in rotating as well as in inertial systems of coordinates. 

Contrary to the PMI, in all the systems of coordinates qq is determined by the angular 
velocity ZII of rotation of the walls with respect to the fixed system of coordinates and is 
separately jndependent of their angular velocity o* relative to the rotating system of co- 
ordinates. In other words, qw* is determined by the invariant expression w* +o,= 0 or 
by the components of the tensor Q* -W* = D which depend in an obvious manner on 0*,-w@ 
and o respectively. 
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